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Tsunamis generated by the impacts of asteroids and comets
into the Earth’s oceans are widely recognized as a potential
catastrophic hazard to the Earth’s population (e.g. Chapman
and Morrison 1994, Nature 367, 33, Hills et al. 1994 Hazards
Due to Comets and Asteroids, ed. T. Gehrels, 779, Atkin-
son 2000, Rept. UK Task Force on Potentially Hazardous
NEOs, http://www.nearearthobjects.co.uk). A number of hy-
drodynamic simulations of tsunami impacts have been carried
out (recently for example Gisler et al. 2003, Sci. Tsunami
Hazards, 21, 119). While 2D and 3D hydrodynamical simu-
lations such as those of Gisler et al. are extremely impressive,
they are also highly computationally intensive; it is especially
difficult if not infeasible to track the tsunami waves over ocean-
basin scales (thousands of km), due to the inordinately large
computational grid required to resolve waves whose amplitude
decreases approximately 00 1/r from the impact point. In addi-
tion, after the initial impact phase in which the impactor strikes
the ocean at a highly supersonic velocity, the phenomena are
governed by gravity-wave speeds ~ (gh)l/ 2 & ¢, 50 that the
typical explicit hydrodynamic sound-speed Courant timestep
limit is unnecessarily restrictive. At this stage classical water-
wave theory becomes useful.

Ward and Asphaug have applied linear water-wave theory
to tsunami wave propagation (cf. Ward and Asphaug 2000,
Icarus, 145, 64, Ward and Asphaug 2002, Deep Sea Res. Part
11, 46, 1073). In these calculations, a water-cavity profile that
is appropriate to an impact is taken as a starting point, and the
resulting waves are evolved (or more precisely evaluated from
integrals over the the wave spectrum) for later times (minutes
to hours) according to linear theory for waves in an ocean of
general depth. This formulation is flexible, adaptable to a wide
variety of situations, and rapidly and easily computable. In ad-
dition there are no sources of poorly-constrained error such as
numerical viscosity, an important point for modeling phenom-
ena having intrinsically low dissipation on long timescales.
On the other hand, linear theory is formally limited to waves
of infinitesimal size, so that the product ak of amplitude a
and wavenumber k = 271/L must be “sufficiently” small, i.e.
ak <« 1 for reasonable results. It is not obvious that waves of
(say) 0.5 km amplitude and 10 km wavelength (which might
be the largest and longest waves resulting from the impact of
a 300 m diameter body and for which ak ~ 1/3 ) will be ade-
quately described by linear theory. Thus we have carried out a
number of hydrodynamic calculations of the collapse of, and
wave generation from, plausible km-scale cavities in a uni-
form ocean of 5 km depth in order to check the validity of the
application to this problem of linear theory and the limitations
thereof. In addition, simple impact calculations were carried
out in order to determine the optimal starting point post-impact
for a linearized treatment.

The hydrodynamical calculations were done using the
code ZEUS3D (Stone and Norman 1992, Ap. J. Supp. 80,

753) as modified by the inclusion of tracer variables for multi-
material calculations (Mac Low and Zahnle 1994, Ap. J. 434,
L33, Zahnle and Mac Low 1996, Icarus, 108, 1). The tracer
variables track the advection of water (and/or rock for an im-
pact calculation) on the numerical grid; no other interface
treatment (such as marker particles) is used. If the grid res-
olution is high enough, diffusion of tracer is minimal and the
atmosphere-ocean interface is adequately sharp. Zones for
which the tracer is present have their pressures set according
to the appropriate equation of state (water or rock), for which
we use the Tillotson formula (Melosh 1989, Impact Cratering).
ZEUS3D is capable of giving good results for incompressible
fluid flows such as growth of the classical Rayleigh-Taylor
instability (Jun et al. 1995, Ap. J 453, 332, Korycansky et
al. 2002, Icarus, 157, 1). The calculations described here
were 2D and axisymmetric with a rigid reflecting bottom and
outer boundary at 150 km radius, to afford the simplest and
most precise comparison with linear waves. In order to en-
sure a hydrodynamically “quiet start”, a pressure gradient to
balance gravity was included in undisturbed portions of the
ocean, along with a corresponding density profile in order to
avoid convective instability due to unstable entropy gradients.
We tested grid sizes up to 520 x 2000 were used for regions of
size 10 km or 13 km in vertical extent (of which 5 km was the
ocean z < 0) and 50 km or 150 km in radial extent. In some
cases, non-uniform grids with geometrical expansion factors
(typically 1.04 x per zone) were used as a test of the possibility
of the improved computational efficiency of such grids. Ar-
bitrary waveforms are possible for initial conditions; a typical
initial wave profile {(r) was given by a parabolic shape for
r <1.5rganda1/r3lipforr > 1.5r,:
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where h is the ocean depth (5 km), q is the relative depth of
the cavity (q = 0.4 usually), and r, is the cavity radius (5 km).

For linear theory various formulations are possible. Here
we use the simple equations of potential theory for the surface
{(r) and velocity potential ¢(r,z) (Drazin and Reid 1981,
Hydrodynamic Stability):
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where the mode wavenumbers ky, are fixed by the boundary
condition d¢/dr = 0 to satisfy J; (kaR) = 0. The mode am-

plitudes a§ (t) and a?(t) are given by

aﬁ(t) = A COS tnt + B sinant
al(t) = % (Ansin ant — B cos ant) (4)

where An and B, are set by the initial conditions ¢ and gpatt =
0: An=ag(0), By = —gaf (0)/an. The mode frequency wh
is given by the well-known dispersion relation for waves in an
ocean of depth h: w? = gkntanh(ksh). The mode amplitudes
are found by the (crude) method of a least-squares fit of mode
amplitudes from Eqgn 3 to the initial profile of { att =0. For
simplicity we take a case for which the initial profile is at
rest so that ¢(r,z0) = 0 and thus the velocity field (for the
hydrocode) v= O¢p = 0.

A fairly typical example of a hydrocode vs. linear theory
is shown in Fig. 1, for the (parabola+1/r2 lip) profile given
above. The two panels show the initial  profile and the ocean
surface at the end of the calculation at t = 500 sec. (Note
the difference in vertical scale between the two panels.) The
ZEUS3D grid was z,r = 130 x 1500 in size, non-uniform in z
and uniform in z; for the linear theory calculation there were
400 radial modes. As predicted by wave theory, the waves dis-
perse so that longest waves propagate fastest and become the
leading waves that would arrive on shore first. Agreement be-
tween linear and non-linear calculations is good for the first 6
leading peaks and troughs (r > 5 x 108 cm). In particular, there
is no reason to think that wave amplitudes drop more rapidly
than ~ 1/r as predicted by linear theory. Interiortor =5 x 106
c¢m, where linear theory shows modes of increasingly large
wavenumber, disagreement between linear and non-linear for-
mulation is significant. Large-k modes are expected to become
non-linear more quickly due to the larger gradients involved
(assuming a constant amplitude). The non-linear calculations
generally show lower amplitudes in the large k regime; while
this is likely due to non-linearity and mode-mixing, it is also
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possible that numerical viscosity spuriously damps short wave-
lengths. (The initial collapse of the cavity produces a transient
peak at r = 0, t ~ 40 sec, which non-linear simulations show
as being much larger than predicted by a linear model. How-
ever, it appears that the transient peak has little influence on
the leading waves that propagate most rapidly to large radii.)
An important consideration is the wave spectrum correspond-
ing to the initial conditions. In Fig. 1 the slope discontinuity
at the lip of the cavity ensures that there is a relatively large
amount of power at large values of k; tests with smooth initial
conditions produce less amplitude in short waves and much
closer agreement between linear and non-linear calculations at
small radii.

A pertinent aspect for the issue of linear-theory predictions
is the choice of initial condition. It is possible to specify
the initial surface profile and one component of the surface
velocity (assuming potential theory). These can be applied at
some optimal time after the impacts, e.g. the moment when
the kinetic energy is at a minimum and the water cavity most
resembles the initial condition above (where the initial kinetic
energy was zero). Further study is necessary to identify this
optimal time point.

Our general conclusion is that linear theory is a reasonably
accurate guide to behavior of tsunamis generated by impactors
of moderate size, where the initial transient impact cavity is
of moderate depth compared to the ocean depth. This is par-
ticularly the case for long wavelength waves that propagate
fastest and would reach coastlines first. Such tsunamis would
be generated in the open ocean by impactors of ~ 300 meters
in diameter, which might be expected to strike the Earth once
every few thousand years, on the average. Larger impactors
produce cavities deep enough to reach the ocean floor; even
here, linear theory is applicable if the starting point is chosen
at a later phase in the calculation when the impact crater has
slumped back to produce a cavity of moderate depth and slope.
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